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Abstract

The conditions dictated by a vapour bubble to exist in saturated liquid ¯owing inside a micro-channel are the main

subject of the paper. The liquid ¯ow is laminar and fully established at a constant wall heat ¯ux. Under these con-

ditions, an equilibrium bubble is shown to require a heat ¯ux, which sensitively increases with decreasing channel

radius. Given a mass ¯ow density, the hydrodynamic forces acting on the bubble generated in a macro-channel may

cause its premature detachment thereby shifting formation of ``visible'' bubbles towards higher heat ¯uxes in com-

parison to macro-channels. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Modelling of bubble nucleation in liquids requires

the state of the mother phase to be speci®ed, in the ®rst

place, and, in the case of a heterogeneous nucleation, the

interaction of this phase with its surroundings. This

implies that the governing ®eld equations for the single

phase have to be solved simultaneously. Di�culties as-

sociated with a treatment of these equations under ¯ow

conditions of the parent phase are usually circumvented

by prescribing particular states, whereas the interaction

e�ects are mostly accounted for in terms of interfacial

tensions. Along such a way of treatment, one arrives at

relationships which state the conditions for a vapour

bubble to survive with pool boiling or ¯ow boiling, see

e.g. [1±11]. As a rule, the ¯ow is considered to be un-

con®ned, that is to say, the equilibrium bubble is much

smaller than the linear measures of the ¯ow ®eld. Re-

cently, Peng et al. [12] provided an expression, which

should be valid under conditions of ¯ow boiling in a

narrow (micro) channel where the bubble diameter is

comparable with the channel diameter. The structure of

this equation strongly di�ers from the ones valid for

¯ows in macro-channels.

In the present paper, we propose another expression

for the heat ¯ux necessary for a vapour bubble, if once

formed, to be able to grow under micro-channel ¯ow

conditions. The following assumptions are adopted:

· thermally and hydrodynamically developed laminar

¯ows;

· single component ¯uid of constant physical proper-

ties;

· constant wall heat ¯ux;

· circular cross-sectional ¯ow area of the channel.

The temperature distribution T �r; x� in a ¯ow thus

speci®ed is known, see e.g. [13], to be

T ÿ TW � 2
qLcpLuR2
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where u is the average ¯uid velocity and oT=ox is the

temperature derivative in the ¯ow direction x; kL; qL and

cpL denote common physical properties, whereas the

meaning of r, R and TW follows from Fig. 1(a).

The basic line of the derivation procedure taken for

the present considerations is the same as used, e.g., in

[3,4,7] for macro-channel ¯ows; the reader may be re-

ferred to these sources for details. Here, it should su�ce

to note the main assumption of the model, namely, the

bubble generation does not a�ect the temperature ®eld

in the liquid.
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2. Relationship between heat ¯ux and bubble size

Whatever processes may generate a vapour bubble,

see e.g. [14±18], particular conditions must be met for

the bubble to survive. These conditions are dictated by

the bubble equilibrium. As it is well known, e.g. [3], this

equilibrium may be expressed for a pure homogeneous

liquid embedding a spherical vapour bubble in terms of

temperature as

TB ÿ T1 � 2
rT1

hLVqVrB

; �2�

where T1 and TB are, respectively, the equilibrium

temperatures at the plane interface and the bubble sur-

face having the curvature radius rB. This equation ig-

nores the e�ects of external ®elds and wall proximity,

which, each for itself, may distort the spherical shape

of the equilibrium bubble [19]. However, for simplicity,

Eq. (2) is considered to be su�ciently accurate for the

present purposes.

Under conditions of heat transfer, the temperature of

the liquid is inhomogeneous and the interface of a

bubble generated on the heated channel wall is probably

not isothermal. At portions of the interface near the wall

surface, a higher interface temperature is expected and

evaporation will take place there, while condensation ±

even under overall saturation conditions ± may occur in

the wall-far region of the interface. In such a case, the

vapour bubble acts as a heat pipe; it will grow when

evaporation overcomes condensation.

The equilibrium at the surface of the bubble illustrated

in Fig. 1(a) may be assumed to occur at the places where

the temperatures T and TB in Eqs. (1) and (2) take the same

values, T � TB. Thus, considering the expression

oT
ox
� 2

qW

qLcpLuR
; �3�

valid at constant wall heat ¯ux qW under the conditions

of Eq. (1), and furthermore, setting TW ÿ T1 � DT , one

obtains from Eqs. (1) and (2)

Nomenclature

A surface area

a thermal di�usivity

c speci®c heat capacity, constant

F force

Dh enthalpy di�erence (latent heat)

k thermal conductivity

_m mass ¯ow density

p pressure

q heat ¯ux

R channel radius, bubble radius

r radial coordinate, bubble radius

S entropy

T temperature

t time

DT temperature di�erence

u average (local in Eqs. (17) and (18)) axial

velocity

V volume

x axial coordinate

m kinematic viscosity

q density

r surface tension

s shear stress

Indices

B bubble

L liquid

LV liquid±vapour

S constant entropy

T constant temperature

V vapour

W wall

1 plane interface

Fig. 1. Spherical vapour bubble in a liquid ¯owing inside a micro-channel heated at a constant heat ¯ux. (a) General illustration of the

model. (b) Sketch showing a vapour bubble at di�erent radial positions, but in the same axial position. Strong hydrodynamic forces in

micro-channels may lead to smaller bubble detachment sizes. When a detached bubble is driven towards the channel axis it might

become unstable with respect to its new surroundings and condense. The arrows indicate the moving direction of the bubble surface.
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The radius r in this equation measures the distance of

the points of the bubble surface, where the equilibrium

occurs, from the channel axis. Analytically, this is the

intersection line of the bubble surface and the isothermal

cylindrical surface �T � TB� having the radius r,

Fig. 1(b). A bubble, touching this isothermal surface

from outside, is completely surrounded by liquid of a

su�cient superheat and will grow. On the contrary, the

same bubble, touching this surface from inside, is not

able to survive.

The radii rB and R can be linked with each other by

specifying the radial bubble position in the channel. For

instance, if the bubble, having a diameter less than the

channel radius, is adhering to the wall surface and the

equilibrium is taken to occur on the bubble vertex (wall

distance 2rB), then, rB=R � �1ÿ �r=R��=2, and Eq. (4)

gives
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The simplest way to treat this equation further is to

choose the radial position r; by this, one speci®es the

bubble size. For example, with r! R the bubble radius

tends to zero, whereas for r � 0 one postulates a vapour

bubble which extends from the wall surface up to the

channel axis �rB=R � 1=2�, and the equation becomes

R2 ÿ 8

3

kLDT
qW

R� 16

3

rT1kL

hLVqVqW

� 0: �6�

If the bubble occupies the whole cross-sectional ¯ow

area �rB � R� and if an equilibrium is assumed to occur

in the channel axis �r � 0�, Eq. (4) delivers 1

R2 ÿ 4

3
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qW

R� 8

3
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To get a unique solution for the channel radius R, the

term in the square root brackets must be zero, thus,

1ÿ 6
rT1kL

hLVqVqW

qW

kLDT

� �2

� 0: �9�

Hence
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or
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Combining the latter two gives

qW � 4

3

2rT1
hLVqVR

kL

R
: �11�

To interpret this equation, we might see the term

�4=3�kL=R to be a heat transfer coe�cient. The heat

¯ux is then calculated by multiplying this heat transfer

coe�cient with the rise of the equilibrium temperature

caused by the curvature of the bubble surface. The

radius R of this bubble coincides with that of the

channel. By Eq. (10a), this temperature di�erence is

just half of the di�erence DT � TW ÿ T1. Note that,

although apparently invariant with respect to the co-

ordinate x, Eq. (11) holds only at a particular axial

position within the channel which can be determined

by means of Eq. (3). Upstream of this position the wall

temperature is too low to satisfy Eq. (7), whereas

downstream, even smaller bubbles can survive there.

Note, too, that Eq. (3) demands developed heat

transfer conditions so that, in a general case, also the

developing portion of the channel length needs to be

considered.

Similarly, Eq. (6) that is valid for a bubble

with rB � R=2 and the equilibrium in the channel axis,

gives

qW � 8

3

2rT1
hLVqVR

kL

R
; �12�

which di�ers from Eq. (11) only by the numerical value

of the constant.

Eq. (11) may be compared with the one reported by

Peng et al. [12]. Setting Dh � 2R and neglecting the

speci®c volume of liquid in comparison with that of

vapour, their expression can be written as

qW P
2

cp
hLV

cpV

kV

R
; �13�

where kV is the thermal conductivity, cpV the speci®c heat

capacity of vapour, and c is an empirical constant. The

disagreement of this equation with Eq. (11) is caused by

1 Clearly, in this case the bubble cannot be ®xed in the

channel under ¯ow conditions. This hypothetical situation is

taken for purposes of comparison with the literature [12].
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di�erent models adopted in the present paper and by

Peng et al. [12].

Peng et al. [12] started from a stability criterion and

arrived at

op
oT

� �
S

>
oS
oV

� �
T

: �14�

The left-hand side in this inequality was obtained from

the Clausius±Clapeyron equation, which requires a two-

phase system, stating (see e.g. [20])

op
oT

� �
V

� oS
oV

� �
T

� SV ÿ SL

VV ÿ VL

; �15�

the subscript V attached to op=oT referring to con-

stant volume, whereas the right-hand side in (14) was

estimated for a system containing only the vapour

phase that is heated at a constant wall heat ¯ux qW

and a ®xed Fourier number, Fo � aVt=R2 � cp. This,

however, makes their derivation procedure inconsis-

tent.

Prior to proceeding to discuss one of the possible

reasons why formation of ``visible'' bubbles in saturated

liquid ¯owing inside a micro-channel may be suppressed

or shifted towards higher heat ¯uxes in comparison with

macro-channels, we should emphasise that, within the

model used in the present paper, there is no speci®c e�ect

of (micro) channel size on the interaction between the

bubble equilibrium and heat ¯ux. Eq. (11) has the same

shape as those valid under macro-channel ¯ow con-

ditions, see e.g. [9,11] for their experimental validation,

and from this point of view, this equation is not new. It

may be of interest that an expression deduced by Faneu�

et al. [1] from an unsteady heat conduction model at

uncon®ned ¯ow conditions reduces, for a saturated liq-

uid, practically to Eq. (11) when the cavity radius is set

equal to the channel radius, see also a discussion pro-

vided by Zuber in [3].

3. Suppression of formation of large bubbles

Assuming, as before, the ¯ow to be laminar and the

pressure drop in the micro-channel to behave like in

macro-channels, then, the wall shear stress sW of a sin-

gle-phase ¯ow becomes

sW � 4
mL

R
_m; �16�

where mL is the liquid kinematic viscosity and _m � qLu is

the mass ¯ow density. Involving Newton's law, we get

the vorticity du=dr of the ¯ow ®eld on the wall surface to

be, approximately,

du
dr

� �
W

� _m
qLR

: �17�

Supposing a vapour bubble of a radius rB to adhere to

the wall, we may estimate a shear lift force F acting on

the bubble as

F � VBqLu�
du
dr

� �
W

� r3
B

u� _m
R
� _m2

R2qL

r4
B; �18�

where VB represents the bubble volume and u� � 2urB=R
is the liquid velocity at the distance rB from the wall.

Expressions (16) and (18) su�ce for our qualitative

discussion so that other forces acting on the bubble, e.g.,

pressure drop and inertia forces, do not need to be

considered here; the reader may be referred to the lit-

erature for details and further hydrodynamic e�ects, e.g.

[21,22].

The shear stress (16) and the lift force (18) facilitate

the bubble sliding and bubble detachment; these forces

are larger for narrow channels. The force F sensitively

increases as the bubble grows. Thus, when a vapour

bubble growing on the wall surface of a micro-channel is

swept away from its formation site at a radius smaller

than the channel radius �rB < R�, the hydrodynamic

forces, and in the ®rst place the lift force (18), tend to

drive the bubble towards the channel axis. In the wall-

far region of the cross-sectional ¯ow area (liquid bulk),

such a bubble may become unstable and condense,

Fig. 1(b). For tiny bubbles, even a superheated liquid

may appear as subcooled, resulting in a process that is

analogous to boiling of an actually subcooled liquid.

Given the mass ¯ow density _m, the bubble detachment

size is smaller at a smaller channel radius. This leads to a

stronger suppression of formation of visible bubbles the

narrower the ¯ow channel.

In context with the bubble suppression discussed

above, the papers by Ward et al. [23] and Brereton et al.

[24], dealing with nucleation in con®ned volume and

capillaries and both starting from dissolved gases,

should be mentioned. Ward et al. showed theoretically

that, for a stable gas bubble to develop within the liq-

uid±gas solution, the content of the gas dissolved in the

liquid must exceed a threshold value. Brereton et al.

reported the nucleation temperature to increase as the

capillary diameter decreases. A further paper, by Yuan

et al. [25], is devoted to bubble dynamics in capillaries

connecting two liquid reservoirs.

4. Conclusion

An equation is derived for the heat ¯ux that must be

applied if a vapour bubble should be able to survive in a

micro-channel under the speci®ed heat transfer condi-

tions. This equation does not indicate any principal

di�erence between micro- and macro-channel ¯ow con-

ditions with regard to the interaction between bubble

equilibrium and heat ¯ux. The suppression of formation
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of a visible vapour bubble, or its shifting towards higher

heat ¯uxes, is discussed in terms of a premature bubble

detachment caused by hydrodynamic forces. On the

basis of simple expressions, it was concluded that the

suppression e�ect is stronger the smaller the channel.
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